Categorical set theory
Categorical set theory is any one of several versions of set theory developed from or treated in the context of mathematical category theory.
See also
References
- Barr, M.; Wells, C. (1996). Category Theory for Computing Science (2nd ed.). Prentice Hall. ISBN 978-0-13-323809-9.
- Bourbaki, N. (1994). Elements of the History of Mathematics. Translated by Meldrum, John. Springer. doi:10.1007/978-3-642-61693-8. ISBN 978-3-642-61693-8.
- Kelley, J.L. (2017) [1955]. General Topology. Dover. ISBN 978-0-486-81544-2.
- Lambek, J.; Scott, P.J. (1988). Introduction to Higher Order Categorical Logic. Cambridge studies in advanced mathematics. Vol. 7. Cambridge University Press. ISBN 978-0-521-35653-4.
- Lawvere, F.W.; Rosebrugh, R. (2003). Sets for Mathematics. Cambridge University Press. ISBN 978-0-521-01060-3.
- Lawvere, F.W.; Schanuel, S.H. (2009). Conceptual Mathematics: A First Introduction to Categories (2nd ed.). Cambridge University Press. ISBN 978-1-139-64396-2.
- Kiyosi Itô, ed. (2000) [1993]. Encyclopedic Dictionary of Mathematics (2nd ed.). MIT Press. ISBN 0-262-59020-4.
- Mitchell, J.C. (1996). Foundations for Programming Languages. MIT Press. ISBN 978-0-585-03789-9. OCLC 48138995.
- Nestruev, J. (2003). Smooth Manifolds and Observables. Springer. ISBN 0-387-95543-7.
- Poizat, B. (2012) [2000]. A Course in Model Theory: An Introduction to Contemporary Mathematical Logic. Translated by Klein, Moses. Springer. ISBN 978-1-4419-8622-1.
External links
- Leinster, Tom (2014). "Rethinking set theory". American Mathematical Monthly. 121 (5): 403–415. arXiv:1212.6543. CiteSeerX 10.1.1.751.6210. doi:10.4169/amer.math.monthly.121.05.403. S2CID 5732995.
See what we do next...
OR
By submitting your email or phone number, you're giving mschf permission to send you email and/or recurring marketing texts. Data rates may apply. Text stop to cancel, help for help.
Success: You're subscribed now !