Jump to content

Central polynomial

In algebra, a central polynomial for n-by-n matrices is a polynomial in non-commuting variables that is non-constant but yields a scalar matrix whenever it is evaluated at n-by-n matrices. That such polynomials exist for any square matrices was discovered in 1970 independently by Formanek and Razmyslov. The term "central" is because the evaluation of a central polynomial has the image lying in the center of the matrix ring over any commutative ring. The notion has an application to the theory of polynomial identity rings.

Example: is a central polynomial for 2-by-2-matrices. Indeed, by the Cayley–Hamilton theorem, one has that for any 2-by-2-matrices x and y.

See also

References

  • Formanek, Edward (1991). The polynomial identities and invariants of n×n matrices. Regional Conference Series in Mathematics. Vol. 78. Providence, RI: American Mathematical Society. ISBN 0-8218-0730-7. Zbl 0714.16001.
  • Artin, Michael (1999). "Noncommutative Rings" (PDF). V. 4.{{cite web}}: CS1 maint: location (link)


See what we do next...

OR

By submitting your email or phone number, you're giving mschf permission to send you email and/or recurring marketing texts. Data rates may apply. Text stop to cancel, help for help.

Success: You're subscribed now !