Jump to content

Cyanohydrin

The structure of a general cyanohydrin.

In organic chemistry, a cyanohydrin or hydroxynitrile is a functional group found in organic compounds in which a cyano and a hydroxy group are attached to the same carbon atom. The general formula is R2C(OH)CN, where R is H, alkyl, or aryl. Cyanohydrins are industrially important precursors to carboxylic acids and some amino acids. Cyanohydrins can be formed by the cyanohydrin reaction, which involves treating a ketone or an aldehyde with hydrogen cyanide (HCN) in the presence of excess amounts of sodium cyanide (NaCN) as a catalyst:[1]

RR’C=O + HCN → RR’C(OH)CN

In this reaction, the nucleophilic CN ion attacks the electrophilic carbonyl carbon in the ketone, followed by protonation by HCN, thereby regenerating the cyanide anion. Cyanohydrins are also prepared by displacement of sulfite by cyanide salts:[2]

Cyanohydrins are intermediates in the Strecker amino acid synthesis. In aqueous acid, they are hydrolyzed to the α-hydroxy acid.

Acetone cyanohydrins

Acetone cyanohydrin, (CH3)2C(OH)CN is the cyanohydrin of acetone. It is generated as an intermediate in the industrial production of methyl methacrylate.[3] In the laboratory, this liquid serves as a source of HCN, which is inconveniently volatile.[4] Thus, acetone cyanohydrin can be used for the preparation of other cyanohydrins, for the transformation of HCN to Michael acceptors, and for the formylation of arenes. Treatment of this cyanohydrin with lithium hydride affords anhydrous lithium cyanide:

Preparative methods

Cyanohydrins were first prepared by the addition of HCN and a catalyst (base or enzyme) to the corresponding carbonyl.[5] On a laboratory scale the use of HCN (toxic) is largely not encouraged, for this reason other less dangerous cyanation reagents are sought out. In situ formation of HCN can be sourced using precursors such as acetone cyanohydrin. Alternatively, cyano-silyl derivatives such as TMS-CN allows for both the cyanation and protection in one step without the need for HCN.[6] Similar procedures relying on ester, phosphate and carbonate formation have been reported.[7][8][9]

Different reactions for the preparation of cyanohydrin

Other cyanohydrins

Mandelonitrile, with the formula C6H5CH(OH)CN, occurs in small amounts in the pits of some fruits.[2] Related cyanogenic glycosides are known, such as amygdalin.[1]

Amygdalin is one of several naturally occurring cyanogenic glycosides.

Glycolonitrile, also called hydroxyacetonitrile or formaldehyde cyanohydrin, is the organic compound with the formula HOCH2CN. It is the simplest cyanohydrin, being derived from formaldehyde.[10]

See also

References

  1. ^ a b David T. Mowry (1948). "The Preparation of Nitriles". Chem. Rev. 42 (2): 189–283. doi:10.1021/cr60132a001. PMID 18914000.
  2. ^ a b Corson, B. B.; Dodge, R. A.; Harris, S. A.; Yeaw, J. S. (1941). "Mandelic Acid". Organic Syntheses; Collected Volumes, vol. 1, p. 336.
  3. ^ William Bauer, Jr. "Methacrylic Acid and Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. doi:10.1002/14356007.a16_441. Article Online Posting Date: June 15, 2000
  4. ^ Haroutounian, S. A. "Acetone Cyanohydrin" Encyclopedia of Reagents for Organic Synthesis 2001, John Wiley & Sons. doi:10.1002/047084289X.ra014
  5. ^ North, M.; Usanov, D. L.; Young, C. Lewis Acid Catalyzed Asymmetric Cyanohydrin Synthesis. Chem. Rev. 2008, 108 (12), 5146–5226. doi:10.1021/cr800255k.
  6. ^ Lidy, W.; Sundermeyer, W. Spaltungsreaktionen Des Trimethylsilylcyanids, Eine Neue Darstellungsmethode Für O-(Trimethylsilyl)Cyanhydrine. Chem. Ber. 1973, 106 (2), 587–593. doi:10.1002/cber.19731060224
  7. ^ Scholl, M.; Lim, C. K.; Fu, G. C. Convenient and Efficient Conversion of Aldehydes to Acylated Cyanohydrins Using Tributyltin Cyanide as a Catalyst. J. Org. Chem. 1995, 60 (19), 6229–6231. doi: 10.1021/jo00124a052.
  8. ^ Yoneda, R.; Harusawa, S.; Kurihara, T. Cyano Phosphate: An Efficient Intermediate for the Chemoselective Conversion of Carbonyl Compounds to Nitriles. J. Org. Chem. 1991, 56 (5), 1827–1832. doi: 10.1021/jo00005a031.
  9. ^ Juhl, M.; Petersen, A. R.; Lee, J.-W. CO2‐Enabled Cyanohydrin Synthesis and Facile Iterative Homologation Reactions. Chem. – A Eur. J. 2020. doi: 10.1002/chem.202003623.
  10. ^ Gaudry, R. (1955). "Glycolonitrile". Organic Syntheses; Collected Volumes, vol. 3, p. 436.

See what we do next...

OR

By submitting your email or phone number, you're giving mschf permission to send you email and/or recurring marketing texts. Data rates may apply. Text stop to cancel, help for help.

Success: You're subscribed now !