Free matroid
In mathematics, the free matroid over a given ground-set E is the matroid in which the independent sets are all subsets of E. It is a special case of a uniform matroid.[1] The unique basis of this matroid is the ground-set itself, E. Among matroids on E, the free matroid on E has the most independent sets, the highest rank, and the fewest circuits.
Free extension of a matroid
The free extension of a matroid by some element , denoted , is a matroid whose elements are the elements of plus the new element , and:
- Its circuits are the circuits of plus the sets for all bases of .[2]
- Equivalently, its independent sets are the independent sets of plus the sets for all independent sets that are not bases.
- Equivalently, its bases are the bases of plus the sets for all independent sets of size .
References
- ^ Oxley, James G. (2006). Matroid Theory. Oxford Graduate Texts in Mathematics. Vol. 3. Oxford University Press. p. 17. ISBN 9780199202508.
- ^ Bonin, Joseph E.; de Mier, Anna (2008). "The lattice of cyclic flats of a matroid". Annals of Combinatorics. 12 (2): 155–170. arXiv:math/0505689. doi:10.1007/s00026-008-0344-3.
See what we do next...
OR
By submitting your email or phone number, you're giving mschf permission to send you email and/or recurring marketing texts. Data rates may apply. Text stop to cancel, help for help.
Success: You're subscribed now !