Jump to content

Guadalupe Group

Guadalupe Group
Stratigraphic range: Campanian-Maastrichtian
~80–70 Ma
Guadalupe Hill
Type locality of the Guadalupe Group
TypeGeological group
Sub-unitsArenisca Labor-Tierna
Plaeners
Arenisca Dura
UnderliesGuaduas Formation
OverliesVilleta Group
 Conejo Fm. & Chipaque Fm.
Lithology
PrimarySandstone, shale
OtherSalt (allochthonous)
Location
Coordinates4°35′31″N 74°03′15″W / 4.59194°N 74.05417°W / 4.59194; -74.05417
RegionAltiplano Cundiboyacense
Eastern Ranges, Andes
Country Colombia
Type section
Named forGuadalupe Hill
Named byPérez & Salazar
Year defined1978
Coordinates4°35′31″N 74°03′15″W / 4.59194°N 74.05417°W / 4.59194; -74.05417
RegionCundinamarca, Boyacá
Country Colombia
Thickness at type section750 metres (2,460 ft)

Paleogeography of Northern South America
65 Ma, by Ron Blakey

The Guadalupe Group (Spanish: Grupo Guadalupe, K2G, Ksg) is a geological group of the Altiplano Cundiboyacense, Eastern Ranges of the Colombian Andes. The group, a sequence of shales and sandstones, is subdivided into three formations; Arenisca Dura, Plaeners and Arenisca Labor-Tierna, and dates to the Late Cretaceous period; Campanian-Maastrichtian epochs and at its type section has a thickness of 750 metres (2,460 ft).

Etymology

The group was published in 1978 by Pérez and Salazar and named after its type locality Guadalupe Hill in the Eastern Hills of Bogotá.[1]

Description

Lithologies

The Guadalupe Group is characterised by three formations; two sandstone sequences, Arenisca Dura and Arenisca Labor-Tierna, and an intermediate shale formation; Plaeners.[1]

Stratigraphy and depositional environment

The Guadalupe Group overlies the Conejo Formation in the central part of the Altiplano Cundiboyacense and the Chipaque Formation in the eastern part and is overlain by the Guaduas Formation. Some authors define the Guadalupe Group as a formation and call the individual formations members.[2] The thickness of the Guadalupe Group in its type locality Guadalupe Hill and the El Cable Hill is 750 metres (2,460 ft).[3] The age has been estimated to be Campanian-Maastrichtian.[4] The Guadalupe Group has been deposited in a marine environment.[5]

Outcrops

Guadalupe Group is located in the Bogotá savanna
Guadalupe Group
Type locality of the Guadalupe Group to the east of the Bogotá savanna

The formations of the Guadalupe Group are apart from its type locality at Guadalupe Hill, Bogotá, found in other parts of the Eastern Hills of Bogotá, the Ocetá Páramo and many other locations, such as the Piedras del Tunjo in the Eastern Ranges.[4][6]

At present, the Guadalupe Group in the anticlinals of Zipaquirá and Nemocón contains rock salt. These halite deposits are not originally deposited in the Late Cretaceous Guadalupe Group, yet are allochthonous diapirs formed when the Jurassic-Lower Cretaceous normal faults were reactivated as reverse faults during the mayor Miocene tectonic movements of the Eastern Ranges.[7] The salt had been deposited during the Early Cretaceous (Valanginian-Barremian, approximately 135 to 125 Ma),[8] intruding into the overlying formations of the Upper Cretaceous.[9]

Regional correlations

Cretaceous stratigraphy of the central Colombian Eastern Ranges
Age Paleomap VMM Guaduas-Vélez W Emerald Belt Villeta anticlinal Chiquinquirá-
Arcabuco
Tunja-
Duitama
Altiplano Cundiboyacense El Cocuy
Maastrichtian Umir Córdoba Seca eroded Guaduas Colón-Mito Juan
Umir Guadalupe
Campanian Córdoba
Oliní
Santonian La Luna Cimarrona - La Tabla La Luna
Coniacian Oliní Villeta Conejo Chipaque
Güagüaquí Loma Gorda undefined La Frontera
Turonian Hondita La Frontera Otanche
Cenomanian Simití hiatus La Corona Simijaca Capacho
Pacho Fm. Hiló - Pacho Churuvita Une Aguardiente
Albian Hiló Chiquinquirá Tibasosa Une
Tablazo Tablazo Capotes - La Palma - Simití Simití Tibú-Mercedes
Aptian Capotes Socotá - El Peñón Paja Fómeque
Paja Paja El Peñón Trincheras Río Negro
La Naveta
Barremian
Hauterivian Muzo Cáqueza Las Juntas
Rosablanca Ritoque
Valanginian Ritoque Furatena Útica - Murca Rosablanca hiatus Macanal
Rosablanca
Berriasian Cumbre Cumbre Los Medios Guavio
Tambor Arcabuco Cumbre
Sources


Stratigraphy of the Llanos Basin and surrounding provinces
Ma Age Paleomap Regional events Catatumbo Cordillera proximal Llanos distal Llanos Putumayo VSM Environments Maximum thickness Petroleum geology Notes
0.01 Holocene
Holocene volcanism
Seismic activity
alluvium Overburden
1 Pleistocene
Pleistocene volcanism
Andean orogeny 3
Glaciations
Guayabo Soatá
Sabana
Necesidad Guayabo Gigante
Alluvial to fluvial (Guayabo) 550 m (1,800 ft)
(Guayabo)
[10][11][12][13]
2.6 Pliocene
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3 Messinian Andean orogeny 3
Foreland
Marichuela Caimán Honda [12][14]
13.5 Langhian Regional flooding León hiatus Caja León Lacustrine (León) 400 m (1,300 ft)
(León)
Seal [13][15]
16.2 Burdigalian Miocene inundations
Andean orogeny 2
C1 Carbonera C1 Ospina Proximal fluvio-deltaic (C1) 850 m (2,790 ft)
(Carbonera)
Reservoir [14][13]
17.3 C2 Carbonera C2 Distal lacustrine-deltaic (C2) Seal
19 C3 Carbonera C3 Proximal fluvio-deltaic (C3) Reservoir
21 Early Miocene Pebas wetlands C4 Carbonera C4 Barzalosa Distal fluvio-deltaic (C4) Seal
23 Late Oligocene
Andean orogeny 1
Foredeep
C5 Carbonera C5 Orito Proximal fluvio-deltaic (C5) Reservoir [11][14]
25 C6 Carbonera C6 Distal fluvio-lacustrine (C6) Seal
28 Early Oligocene C7 C7 Pepino Gualanday Proximal deltaic-marine (C7) Reservoir [11][14][16]
32 Oligo-Eocene C8 Usme C8 onlap Marine-deltaic (C8) Seal
Source
[16]
35 Late Eocene
Mirador Mirador Coastal (Mirador) 240 m (790 ft)
(Mirador)
Reservoir [13][17]
40 Middle Eocene Regadera hiatus
45
50 Early Eocene
Socha Los Cuervos Deltaic (Los Cuervos) 260 m (850 ft)
(Los Cuervos)
Seal
Source
[13][17]
55 Late Paleocene PETM
2000 ppm CO2
Los Cuervos Bogotá Gualanday
60 Early Paleocene SALMA Barco Guaduas Barco Rumiyaco Fluvial (Barco) 225 m (738 ft)
(Barco)
Reservoir [10][11][14][13][18]
65 Maastrichtian
KT extinction Catatumbo Guadalupe Monserrate Deltaic-fluvial (Guadalupe) 750 m (2,460 ft)
(Guadalupe)
Reservoir [10][13]
72 Campanian End of rifting Colón-Mito Juan [13][19]
83 Santonian Villeta/Güagüaquí
86 Coniacian
89 Turonian Cenomanian-Turonian anoxic event La Luna Chipaque Gachetá hiatus Restricted marine (all) 500 m (1,600 ft)
(Gachetá)
Source [10][13][20]
93 Cenomanian
Rift 2
100 Albian Une Une Caballos Deltaic (Une) 500 m (1,600 ft)
(Une)
Reservoir [14][20]
113 Aptian
Capacho Fómeque Motema Yaví Open marine (Fómeque) 800 m (2,600 ft)
(Fómeque)
Source (Fóm) [11][13][21]
125 Barremian High biodiversity Aguardiente Paja Shallow to open marine (Paja) 940 m (3,080 ft)
(Paja)
Reservoir [10]
129 Hauterivian
Rift 1 Tibú-
Mercedes
Las Juntas hiatus Deltaic (Las Juntas) 910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun) [10]
133 Valanginian Río Negro Cáqueza
Macanal
Rosablanca
Restricted marine (Macanal) 2,935 m (9,629 ft)
(Macanal)
Source (Mac) [11][22]
140 Berriasian Girón
145 Tithonian Break-up of Pangea Jordán Arcabuco Buenavista
Saldaña Alluvial, fluvial (Buenavista) 110 m (360 ft)
(Buenavista)
"Jurassic" [14][23]
150 Early-Mid Jurassic
Passive margin 2 La Quinta
Noreán
hiatus Coastal tuff (La Quinta) 100 m (330 ft)
(La Quinta)
[24]
201 Late Triassic
Mucuchachi Payandé [14]
235 Early Triassic
Pangea hiatus "Paleozoic"
250 Permian
300 Late Carboniferous
Famatinian orogeny Cerro Neiva
()
[25]
340 Early Carboniferous Fossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche) 900 m (3,000 ft)
(Cuche)
360 Late Devonian
Passive margin 1 Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones) 2,400 m (7,900 ft)
(Farallones)
[22][26][27][28][29]
390 Early Devonian
High biodiversity Floresta
(387-400)
Shallow marine (Floresta) 600 m (2,000 ft)
(Floresta)
410 Late Silurian Silurian mystery
425 Early Silurian hiatus
440 Late Ordovician
Rich fauna in Bolivia San Pedro
(450-490)
Duda
()
470 Early Ordovician First fossils Busbanzá
(>470±22)
Guape
()
Río Nevado
()
[30][31][32]
488 Late Cambrian
Regional intrusions Chicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
[33][34]
515 Early Cambrian Cambrian explosion [32][35]
542 Ediacaran
Break-up of Rodinia pre-Quetame post-Parguaza El Barro
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement [36][37]
600 Neoproterozoic Cariri Velhos orogeny Bucaramanga
(600-1400)
pre-Guaviare [33]
800
Snowball Earth [38]
1000 Mesoproterozoic
Sunsás orogeny Ariarí
(1000)
La Urraca
(1030-1100)
[39][40][41][42]
1300 Rondônia-Juruá orogeny pre-Ariarí Parguaza
(1300-1400)
Garzón
(1180-1550)
[43]
1400
pre-Bucaramanga [44]
1600 Paleoproterozoic Maimachi
(1500-1700)
pre-Garzón [45]
1800
Tapajós orogeny Mitú
(1800)
[43][45]
1950 Transamazonic orogeny pre-Mitú [43]
2200 Columbia
2530 Archean
Carajas-Imataca orogeny [43]
3100 Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]


Panorama

The Cerro de Águilas on the Ocetá Páramo is composed of sediments belonging to the Guadalupe Group

See also

Geology of the Eastern Hills
Geology of the Ocetá Páramo
Geology of the Altiplano Cundiboyacense

Notes

  1. ^ based on Duarte et al. (2019)[46], García González et al. (2009),[47] and geological report of Villavicencio[48]
  2. ^ based on Duarte et al. (2019)[46] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[49]

References

  1. ^ a b Montoya Arenas & Reyes Torres, 2005, p.37
  2. ^ Guerrero Uscátegui, 1992, p.4
  3. ^ Guerrero Uscátegui, 1992, p.5
  4. ^ a b Montoya Arenas & Reyes Torres, 2005, pp.38-50
  5. ^ Villamil, 2012, p.164
  6. ^ Plancha 227, 1998
  7. ^ Montoya Arenas & Reyes Torres, 2005, p.98
  8. ^ Guerrero Uscátegui, 1993, p.12
  9. ^ García & Jiménez, 2016, p.24
  10. ^ a b c d e f García González et al., 2009, p.27
  11. ^ a b c d e f García González et al., 2009, p.50
  12. ^ a b García González et al., 2009, p.85
  13. ^ a b c d e f g h i j Barrero et al., 2007, p.60
  14. ^ a b c d e f g h Barrero et al., 2007, p.58
  15. ^ Plancha 111, 2001, p.29
  16. ^ a b Plancha 177, 2015, p.39
  17. ^ a b Plancha 111, 2001, p.26
  18. ^ Plancha 111, 2001, p.24
  19. ^ Plancha 111, 2001, p.23
  20. ^ a b Pulido & Gómez, 2001, p.32
  21. ^ Pulido & Gómez, 2001, p.30
  22. ^ a b Pulido & Gómez, 2001, pp.21-26
  23. ^ Pulido & Gómez, 2001, p.28
  24. ^ Correa Martínez et al., 2019, p.49
  25. ^ Plancha 303, 2002, p.27
  26. ^ Terraza et al., 2008, p.22
  27. ^ Plancha 229, 2015, pp.46-55
  28. ^ Plancha 303, 2002, p.26
  29. ^ Moreno Sánchez et al., 2009, p.53
  30. ^ Mantilla Figueroa et al., 2015, p.43
  31. ^ Manosalva Sánchez et al., 2017, p.84
  32. ^ a b Plancha 303, 2002, p.24
  33. ^ a b Mantilla Figueroa et al., 2015, p.42
  34. ^ Arango Mejía et al., 2012, p.25
  35. ^ Plancha 350, 2011, p.49
  36. ^ Pulido & Gómez, 2001, pp.17-21
  37. ^ Plancha 111, 2001, p.13
  38. ^ Plancha 303, 2002, p.23
  39. ^ Plancha 348, 2015, p.38
  40. ^ Planchas 367-414, 2003, p.35
  41. ^ Toro Toro et al., 2014, p.22
  42. ^ Plancha 303, 2002, p.21
  43. ^ a b c d Bonilla et al., 2016, p.19
  44. ^ Gómez Tapias et al., 2015, p.209
  45. ^ a b Bonilla et al., 2016, p.22
  46. ^ a b Duarte et al., 2019
  47. ^ García González et al., 2009
  48. ^ Pulido & Gómez, 2001
  49. ^ García González et al., 2009, p.60

Bibliography

  • García González, Mario; Mier Umaña, Ricardo; Cruz Guevara, Luis Enrique; Vásquez, Mauricio (2009), Informe Ejecutivo - evaluación del potencial hidrocarburífero de las cuencas colombianas, Universidad Industrial de Santander, pp. 1–219
  • García, Helbert; Jiménez, Giovanny (2016), "Structural analysis of the Zipaquirá Anticline (Eastern Cordillera, Colombia)", Boletín de Ciencias de la Tierra, Universidad Nacional de Colombia, 39 (39): 21–32, doi:10.15446/rbct.n39.50333
  • Guerrero Uscátegui, Alberto Lobo (1993), Informe sobre la Cuenca Petrolífera de la Sabana de Bogotá, Colombia, pp. 1–29
  • Guerrero Uscátegui, Alberto Lobo (1992), Geología e Hidrogeología de Santafé de Bogotá y su Sabana, Sociedad Colombiana de Ingenieros, pp. 1–20
  • Montoya Arenas, Diana María; Reyes Torres, Germán Alfonso (2005), Geología de la Sabana de Bogotá, INGEOMINAS, pp. 1–104
  • Villamil, Tomas (2012), Chronology Relative Sea Level History and a New Sequence Stratigraphic Model for Basinal Cretaceous Facies of Colombia, Society for Sedimentary Geology (SEPM), pp. 161–216

Maps

See what we do next...

OR

By submitting your email or phone number, you're giving mschf permission to send you email and/or recurring marketing texts. Data rates may apply. Text stop to cancel, help for help.

Success: You're subscribed now !