Jump to content

Nanoflower

Catalytic nanomaterial with a flower-shaped structure

A nanoflower, in chemistry, refers to a compound of certain elements that results in formations which in microscopic view resemble flowers or, in some cases, trees that are called nanobouquets or nanotrees.[1] These formations are nanometers long and thick so they can only be observed using electron microscopy.[2]

Production

Several ways to produce nanoflowers are known:

Nanomeadow

In supercapacitors, energy is stored because the electrodes are coated with a porous material that soaks up ions like a sponge, usually activated carbon. Nanomeadow supercapacitors store ions in manganese oxide (MnO), a material with a much greater capacity for ions than activated carbon.[4]

Scientists at Research Institute of Chemical Defence (Beijing, China) and Peking University created a nanomeadow of microscopic structures, fuzzy flowers of MnO each about 100 nanometres across on a field of messy carbon nanotube grass grown on a tantalum metal foil. Nanomeadows perform 10 times better than MnO alone and can store twice as much charge as the carbon-based electrodes in existing ultracapacitors.[4]

See also

Footnotes

  1. ^ "Silicon carbide nanoflowers bloom - nanotechweb.org". nanotechweb.org. Retrieved 2008-06-18.
  2. ^ Kalaugher, Liz. "Nanoflowers: Science Videos - Science News - ScienCentral". www.sciencentral.com. Archived from the original on 2008-08-03. Retrieved 2008-06-18.
  3. ^ Kalaugher, Liz. "Nanoflowers blossom in place of nanotubes - nanotechweb.org". nanotechweb.org. Archived from the original on 2016-03-03. Retrieved 2008-06-18.
  4. ^ a b Colin Barras (17 September 2008). "Can nanoscopic meadows drive electric cars forward?". New Scientist.

References

  • Summary of the 2nd E.E.F. (Enosi Ellinon Fysikon, Hellenic Science Society) Conference in Texnopolis Athens, Greece

See what we do next...

OR

By submitting your email or phone number, you're giving mschf permission to send you email and/or recurring marketing texts. Data rates may apply. Text stop to cancel, help for help.

Success: You're subscribed now !