Jump to content

Zerodur

Opening of the ELT secondary mirror ZERODUR® blank mould containing the glass at first annealing at the Schott AG 4-meter blank annealing facility in Mainz, Germany.[1]

Zerodur is a lithium-aluminosilicate glass-ceramic manufactured by Schott AG. Zerodur has a near zero coefficient of thermal expansion (CTE), and is used for high-precision applications in telescope optics, microlithography machines and inertial navigation systems.

Applications

The Keck II Telescope showing the segmented primary mirror made of Zerodur

The main applications for Zerodur include telescope optics in astronomy[2] and space applications,[3] lithography machines for microchips and displays,[4] and inertial measurements systems for navigation.[5][6]

In astronomy, it is used for mirror substrates in large telescopes such as the Hobby-Eberly Telescope,[7] the Keck I and Keck II telescopes,[8] the Gran Telescopio Canarias,[9] the Devasthal Optical Telescope,[10] the European Southern Observatory's 8.2 m Very Large Telescope,[11] and the 39 m Extremely Large Telescope.[12]

In space, it has been used for the primary mirror of SOFIA’s telescope,[13] for the imager in Meteosat Earth observation satellites,[14] and for the optical bench in the LISA Pathfinder mission.[15]

In microlithography, Zerodur is used in wafer steppers and scanner machines for precise and reproducible wafer positioning.[16][17] It is also used as a component in refractive optics for photolithography.[18]

In inertial measurement units, Zerodur is used in ring laser gyroscopes.[19]

Properties

Zerodur has both an amorphous (vitreous) component and a crystalline component. Its most important properties[20] are:

  • The material exhibits a particularly low thermal expansion, with a mean value of 0 ± 0.007×10−6 K−1 within the temperature range of 0 to 50 °C.[21]
  • High 3D homogeneity[21] with few inclusions, bubbles and internal stria.
  • Hardness similar to that of borosilicate glass.
  • High affinity for coatings.
  • Low helium permeability.
  • Non-porous.
  • Good chemical stability.
  • Fracture toughness approximately 0.9 MPa·m1/2.[22][23]

Physical properties

History

Schott, under Jürgen Petzoldt, began developing glass-ceramics in the 1960s, in response to demand for low expansion glass ceramics for telescopes.[25]

In 1966, Hans Elsässer, the founding director of the Max Planck Institute for Astronomy, asked the company if it could produce large castings of almost 4 meters using low-expansion glass-ceramic for telescope mirror substrates. The order for a 3.6 m (12 ft) mirror blank, along with ten smaller mirror substrates was accepted in November 1968. Development ended by December 1969, and the mirrors were delivered by late 1975.[25]

In 1984, the mirror substrate went into operation in a telescope at the Calar Alto Observatory in Spain. Further orders for mirror blanks subsequently followed.[26]

See also

References

  1. ^ "Secondary Mirror of ELT Successfully Cast - Largest convex mirror blank ever created". www.eso.org. Retrieved 22 May 2017.
  2. ^ Döhring, Thorsten (May 2019). "Four decades of ZERODUR mirror substrates for astronomy". Proceedings, 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes. 7281. doi:10.1117/12.831423. Retrieved 10 May 2024.
  3. ^ Carré, Antoine (May 2023). "Comprehensive review of the effects of ionizing radiations on the ZERODUR® glass ceramic". Journal of Astronomical Telescopes, Instruments, and Systems. 9 (2). doi:10.1117/1.JATIS.9.2.024005. Retrieved 10 May 2024.
  4. ^ "SCHOTT Strengthens Glass Substrate Portfolio". Printed Electronics Now. September 29, 2023.
  5. ^ Sokach, Stephen. "ZERODUR: The Highly Technical Glass-Ceramic". Tech Briefs. Retrieved 10 May 2024.
  6. ^ "Zerodur". Mindrum Precision. Retrieved 10 May 2024.
  7. ^ "Hobby-Eberly Telescope | McDonald Observatory". mcdonaldobservatory.org. Retrieved 2024-07-12.
  8. ^ "A Mirror's Perfect Reflection". W.M. Keck Observatory. Retrieved 10 May 2024.
  9. ^ "Description of the GTC". Gran Telescopio CANARIAS. Retrieved 10 May 2024.
  10. ^ "3.6 m DOT Telescope". ARIES. Retrieved July 7, 2024.
  11. ^ "Very Large Telescope". ESO. Retrieved 10 May 2024.
  12. ^ "Mirrors and Optical Design". ESO. Retrieved 10 May 2024.
  13. ^ Krabbe, Alfred (June 2000). "SOFIA telescope". Proceedings, Airborne Telescope Systems. 4014. arXiv:astro-ph/0004253. doi:10.1117/12.389103. Retrieved 10 May 2024.
  14. ^ "MTG (Meteosat Third Generation) - eoPortal". www.eoportal.org. Retrieved 2024-07-12.
  15. ^ "LISA Technology Package Optical Bench Interferometer During Calibration". ESA. Retrieved 10 May 2024.
  16. ^ Hartmann, Peter. "SCHOTT – Ultra low expansion glass ceramic ZERODUR" (PDF). Max-Planck-Institut für Astronomie. p. 49. Retrieved 10 May 2024.
  17. ^ Jedamzik, Ralf (2014). "Glass ceramic ZERODUR enabling nanometer precision". Proceedings, Optical Microlithography XXVII. 9052. doi:10.1117/12.2046352. Retrieved 10 May 2024.
  18. ^ Mitra, Ina (September 2022). "ZERODUR: a glass-ceramic material enabling optical technologies". Optical Materials Express. 12 (9): 3563. doi:10.1364/OME.460265. Retrieved 10 May 2024.
  19. ^ Pinckney, Linda R. (2003). "Glass-Ceramics". Encyclopedia of Physical Science and Technology (Third Edition): 807–816. doi:10.1016/B0-12-227410-5/00293-3. Retrieved 10 May 2024.
  20. ^ "Technical Details ZERODUR®". schott.com. Retrieved 6 September 2024.
  21. ^ a b Hartmann, Peter; Jedamzik, Ralf; Carré, Antoine; Krieg, Janina; Westerhoff, Thomas (24 March 2006). "Glass ceramic ZERODUR®: Even closer to zero thermal expansion: a review, part 2". Journal of Astronomical Telescopes, Instruments, and Systems. 7 (2). doi:10.1117/1.JATIS.7.2.020902.
  22. ^ Viens, Michael J (April 1990). "Fracture Toughness and Crack Growth of Zerodur". NASA Technical Memorandum 4185. NASA. Retrieved 6 September 2024.
  23. ^ Hartmann, P. (18 December 2012). "ZERODUR - Deterministic Approach for Strength Design" (PDF). Optical Engineering. 51 (12). NASA: 124002. Bibcode:2012OptEn..51l4002H. doi:10.1117/1.OE.51.12.124002. S2CID 120843972. Retrieved 11 September 2013.
  24. ^ Senf, H; E Strassburger; H Rothenhausler (1997). "A study of Damage during Impact in Zerodur" (PDF). J Phys IV France. 7 (Colloque C3, Suppltment au Journal de Physique I11 d'aotit 1997): C3-1015-C3-1020. doi:10.1051/jp4:19973171. Retrieved 31 August 2011.
  25. ^ a b Pannhorst, Wolfgang (1995). "Chapter 4: Zerodur® - A Low Thermal Expansion Glass Ceramic for Optical Precision Applications". In Bach, Hans (ed.). Low Thermal Expansion Glass Ceramics. Springer. pp. 107–121. ISBN 3-540-58598-2.
  26. ^ Lemke, Dietrich. Im Himmel über Heidelberg - 50 Jahre Max-Planck-Institut für Astronomie in Heidelberg (1969 – 2019) (PDF) (in German). Berlin, Heidelberg.

See what we do next...

OR

By submitting your email or phone number, you're giving mschf permission to send you email and/or recurring marketing texts. Data rates may apply. Text stop to cancel, help for help.

Success: You're subscribed now !